
NASA-CR-194351

A FINAL REPORT FOR:

EVALUATION OF THE SHUTTLE REMOTE

MANIPULATOR _,4,4_/F-
/A/-_ 1-c. _-

Otherwise known as: c_//

DETERMINATION OF TARGET POSE WITHOUT SENSOR REFLECTION

Prepared for: Leo Monford, NASA-JSC

O
O
cO

I
,:t
0"
Z

U
e"

0
eel

,e-,l

r_

r_
o

by
L. J. Everett

and

R. C. Redfield

Mechanical Engineering Department

Texas A&M University

College Station, Texas 77843-3123

September 23, 1993

INTRODUCTION

The objective initially proposed was to analyze RMS performance data collected

during a Shuttle Flight. The data was to consist of video TRAC data collected via

a video recorder. Unfortunately, the flight never collected the data due to higher

priority experiments superseding it. As a result, the research team at Texas A&M

was directed to work on several other pressing issues regarding the TRAC sensor. All

but one of these issues have been reported to the contract monitor (Mr. Leo Monford)

earlier in the form of periodic status reports.

In fulfilment of the grant conditions, the last issue investigated is being reported

as the final report. Ordinarily, a TRAC sensor determines the orientation of an object

by analyzing the image reflected from a mirror target. The concern addressed by this

report is to develop a method for using the TRAC sensor when the target does not

reflect a usable image.

.3

Determination of Target Pose without Sensor Reflection

Objective

Given two objects or structures with relative pose between them, an object with an integral,

specially configured target and an object with a vision sensor, determine the position and orientation

of the target relative to the sensor. No mirror reflection of the sensor off the target and back to the

sensor is available.

Hardware

The target is a configuration of four distinct objects (LED arrays, retro-reflectors, etc.) that can

be independently recognized. The vision system sensor views the target and a computer algorithm

determines the azimuth and elevation of each LED array relative to the sensor coordinate system.

Coordinates

In Figure 1 the vis_n system is at the origin, O, of the right-hand coordinate system fixed to

the sensor object. The target is at P. The forward axis of the sensor, which is the optical axis of the

vision system, is in the z direction. Upward is the y direction and to the left is the x direction. The

position vector from O to P is R which has length r. Azimuth angle, 0, is defined about the y

axis measured from positive z; elevation angle, a, is about x in the negative direction measured

from the x-z plane.

X

P

i

Figure 1 - Coordinate system

Z

A working angle q_ is def'med as the angle between the position vector and the x-z plane.

Cartesian geometry shows that if

R = px[+ pyj'+ pz _,

then

where

Px = r cosq_ sin0

=r sinq_

laz = r cos_0 cos0

(1)

(2)

(3)

Full geometry

The entire geometry including the 4 target objects is shown in Figure 2.

X

d_
P3

P4

r13

V14

R3 R4 P2 /

y!
Figure 2 - G_metry of tracking scenario

The origin of the x-y-z system is the vision system, the 4 black dots are the target objects Pi, the R i

aretheradiusvectorsbetweenthesensorobjectandtheindividual targetobjects,andthe Vij are the

vectorsconnectingthe points in the target. The azimuth and elevation of each radius vector is

known,but its lengthis not. Thegeometryof thetargetis known, that is the lengthsof the Vij and

theanglesbetweenthe Vij.

Determination of target pose

If the lengths of the R i (ri) can be found, the points Pi can be calculated and the target pose will

be known. To the investigators' knowledge, any solution to this problem involves the simultaneous

solution of a set of nonlinear algebraic equations. To solve this set of equations, an initial guess of

the r i converges to a solution by iteration.

Two approaches are taken to this problem, both of which are detailed in the next section of this

paper. The "direct" approach takes a guess at one of the radius vector lengths, r 1, and calculates the

remaining radius vectors based on geometry. If these vectors determine a target configuration

geometry that agrees with the actual geometry to some tolerance, a solution is found, otherwise a

new guess at r 1 is taken. The second approach guesses all four radius vectors, applies the geometric

nonlinear relations, fi(r 1, r2, r3, r4) = fi (r-) = E, and calculates a residual that indicates error. The four

vector lengths are simultaneously altered with a Newton-Raphson technique for sets of nonlinear

equations.

Direct approach

An initial guess of one of the radius vector lengths, r i, allows the calculation of a second radius

vector length, rj from the geometry of Figure 3.

ri Pi

Figure 3 - Guess at radius vectors

3

The law of cosines is applied with a guess for r i, and a known vij and 13. 13is the angle subtended by

R i and Rj. The cosine of 13 is found as the dot product of the radius unit vectors, _ • e,5"

The geometry yields zero, one, or two real rj for each given r i as seen in the quadratic equation

of equation 4.

r2- 2ri c°sl3 rJ + ri2 - vi2 " 0 (4)

In Figure 4, four possible cases, A-D, are shown for the solution of equation 4. R i and Rj are two

radius vectors of known directions but unknown lengths and Vij is the target vector between R i and

Rj with known length but unknown direction. The circles all have a radius of vii = IVijl. a-d are

distances along R i from the origin, O.

B A 1_

Figure 4 - Possible radius vectors

Case A shows a guessed length for R i of a. No direction of Vii allows contact with Rj so the

guessed length is too long and the solution to equation 4 would yield complex numbers. Case B

shows a guess length for R i of b that allows one solution, vector Vii is normal to Rj. The quadratic

equation would result in a repeated root. Case C shows a length for R i of c that gives two solutions

to the direction of Vij and Case D shows that one of the two solutions implies a negative Rj which is

not physically possible in the targeting scenario.

For the solution of all four radius vectors, the following steps are taken which will be detailed

afterwards:

a)

b)

c)
d)

Determine valid range and increment for r 1"

Cycle through the r I range from maximum to minimum.

1) For each r 1calculate possible r 2, r 3, and r4.

2) For each combination of r 1 "" r4 determine all vij from equation 4.

3) Calculate error as difference between vij from step b2 and actual target vii.

4) Record rmin that minimizes error

5) Pick new r I and repeat b.

Determine new range near r I rain; repeat step b

Stop when r 1increment is less than tolerance.

The maximum r 1 value is determined such that given vii, real r2, r3, and r 4 exist.

Figure 4 shows the maximum r i that allows a real solution for rj. If ri>b, there is no solution.

result is that

Case B in

The

vij

rimax = sin 13 (5)

This maximum is determined for each of the 3 vectors r2-r 4 and the minimum of these is retained.

The minimum r I is initially taken to be zero and its range is arbitrarily divided into n

increments of length rim = r i max/n, r I is cycled through this range from maximum to minimum and

for each r 1 the r2-r 4 are determined with equation 4. Since there are usually 2 rj (j=2,3,4) for each

rl, there are 2 3 combinations of radius vectors for each r 1"

Each of these combinations of ri, rj is inserted into equation 4 for i,j=2,3; 2,4; 3,4 and the vii

are calculated. The closer these calculated vij are to the actual vij the better the estimate of r. The

difference between the two vii is termed "error." For the r _ that gives a minimum error in the current

range (r 1"), a new range for r I is chosen to be r 1 + rmc to rl* - rmc. The maximum value is kept no

more than R 1 max and the minimum value is never less than zero. A new increment is chosen by

dividing the new range into n divisions. When the rin ¢ is less than some tolerance and the minimum

error is found in the current range, the solution is in hand.

The FORTRAN code that implements this strategy is in Appendix A.

Newton-Raphson approach

This method solves a set of 4 nonlinear equations where the fJij and vij are known and the r i are

unknown. Equation (6) is the set of equations; with correct r, the fi = 0.

5

fl(r,,r2,r3,r4)=rl2+r22- 2rlr2¢osl3,2-v122
f,(r,,.., .,, ..)--.: +._- 2.._r,_o,,.,- vo?,
f3(r,,r2,r3,r4)=r_+r] - 2r3r4¢osl334- v_4
f4(r,,r2,r3,r4)=r]+r_- 2r4r, cos_41-v42, (6)

Press et al. [1986] outline the method where a truncated Taylor series expansion approximates the fi

with the second and higher order terms dropped.

(7)

For an initial guess of r, the left had sides of equation (6) are not usually zero. From equation (7),

the _ir are required that make fi (r + _r) zero given an initial fi (r_). Equation (7) is a linear set of

equations in _r that can be solved with LU decomposition or any other method. As long as the

initial guess of _ is close enough to the solution, the Newton-Raphson schemes converges nicely.

Otherwise, the scheme may never converge or perhaps converge to the wrong solution.

In practice, the algorithm converges very well in a local neighborhood around the correct

solution. If the guess is not in the neighborhood the scheme either does not converge or it converges

to a wrong solution. The difficulty is in defining the neighborhood. In testing, sometimes an initial

guess for r of 50% of the solution would converge in less than 50 iterations. Other times, an initial

guess within 5% of the solution would never converge. This uncertainty leaves the Newton-Raphson

lacking without further inquiry.

The FORTRAN code for this scheme is in Appendix B.

References

Press, W. H., Flannery, B. P., Teukolsky, S A., and Vetterling, W. T., 1986, Numerical

Recipes: The Art of Scientific Computing, Cambridge University Press, Cambridge, pp. 269.

6

Appendix A - FORTRAN code for direct approach

c* ***

c target .for

program target
C

C

c Routlne flnd Ri for 4 vectors by guessing RI, calculating R2, R3, and R4

c and applylng law of coslnes to find residual errors. Ri that mlnlmlzes

c errors is best guess.

c I 2 3 4 5 6 7

c234567B9012345678901234567890123456789012345678901234567890123456789012

real r2(2),r3(2), r4(2), err(2,2)

real t(4,4), az(4), el(4), phi(4), c(4,4), s2(4,4)

real merit, minl, min2

open (unlt=10, flle='target.lnp', status='old ')

c read input data from file TARGET.INP

read (10,*) toldrl, tolmin
tmax = 0

do 5, I=I , 3

do 5, J=i+1,4

read (10,*) t(i,j)

t(j, I) = t(i,j)

tmax = amax1(tmax, t(i,j))
read (10,*) _az(i), i=I, 4)

read (10,*) (el(i), i=I, 4)

! Converg tolerances
l Initialize max value

J Symmetrlc
! Max target vector

! Azimuth angles

! Elevation angles

c convert to radians from degrees

I0

pl = 3.14159

do 10 I=I, 4

az(i) = az(i) * pi/180

el(i) = el(1) * pi/180

phl(1) = atan(tan(el(i)) * cos(az(i)))

! Calculate pl

c calculate cos and sin of angles between radius vectors (cos = el dot e2)

2O

do 20, i=I, 3

do 20, j=i+l, 4
c(i,j) = sin(phl(i)) * sin(phi(j)) +

cos(phi(i))*cos(az(1)) * cos(phi(j))*cos(az(j)) +

cos(phl(i))*sin(az(i)) * cos(phl(j))*sin(az(j))

c(j,i) = c(i,j)

wrlte(6,*) 'c,t ', l,j, c(i,j), t(i,j) ! echo input

s2(i,j) = I c(l,j)**2 ! sine squared of angle

s2(j,i) = s2(i,j) I Symmetric

c limits on ri values

rmax = l.e20

do 30, j=2, 4

tmp = sqrt(s2(1,j))

if (imp .eq. O) tmp=1.e-20

tmp = t(l,j)/tmp"

I init ial rmax

! slne of angle I-I

! no / by zero

! max rl due to r(j)

3O

if (tmp .eq. O) tmp=1.e-20

trap = t(1,j)/tmp

rmax = amln1(rmax, trap)
cont inue

no / by zero

max rl due to r(j)
max rl is mln of 4

c loop to flnd radius vector lengths - set increment based on limlts

rmln = O.

rup = rlox

drl = rmax / 10

mlnl = I.e20

mln2 = I.e20

wrlte(6,*) ' '
wrlte(6,*) 'dr1-> '

!

do 80, rl =

, drl, ' rup-> ',rup,

rmln-> ' rmin

rup, rmln, -drl

! rl minimum

rl increment

inltial minlmums

counter

loop rls

c two values of r2,r3,and r4 for each rl

tmp2 = t(1,2)*'2 - ri*'2 * s2(1,2)

if (tmp2 .It. 0.) tmp2 = O.

tmp3 = t(1,3)*'2 - ri*'2 * s2(1,3)

if (tmp3 .It. 0.) tmp3 = O.

r2(I) = rl * c(1,2) + sqrt(tmp2)

r2(2) = rl * c(1,2) - sqrt(tmp2)

r3(I) = rl * c(1,3) + sqrt(tmp3)

r3(2) = rl * c(1,3) - sqrt(tmp3)

c check 2-3 vector, 4 comblnations

do 60, i=I_2

do 60 j=1,2

err(i,j) = r2(i)*'2 + r3(j)**2 -

2*r2(i)*r3(j)*c(2,3) - t(2,3)*'2

tmp4 = t(1,4)*'2 - ri*'2 * s2(1,4)

If (tmp4 .It. 0.) tmp4 = O.

r4(I) = rl * c(1,4) + sqrt(tmp4)

r4(2) = rl * c(1,4) - sqrt(tmp4)

S

S

do 55 k=1,2
err24 = r2(I)*'2 + r4(k)**2 -

2*r2(i)*r4(k)*c(2,4) - t(2,4)*'2

err34 = r3(j)**2 + r4(k)**2 -

2*r3(j)*r4(k)*c(3,4) - t(3,4)*'2

! vector 2-4

! vector 3-4

c merit is sum of absolute 2-3, 2-4, and 3-4 vector errors

merit = abs(err24) + abs(err34) + abs(err(i,j))

if (merit .It. mlnl) then

mln2 = mlnl

rl f2 = rlfl
r2f2 = r2fl

r3f2 = r3fl

r4f2 = r4fl

minl = merit

rl fl = rl

r2fl = r2(1)

r3fl = r3(j)
r4fl = r4(k)

else

! save best

8

55
6O
8O

if (merlt .It.

rain2 = merlt

rl f2 = rl

r2f2 = r2(i)

r3f2 = r3(j)
r4f2 = r4(k)

endif

endi f

mln2) then
! save second best

contlnue

continue

continue

wrlte(6,*) 'I-> ', rlfl, r2fl, r3fl, r4fl

wrlte(6,*) 'merit I-> ',minl

Irlte(6,*) '2-> ', rlf2, r2f2, r3f2, r4f2

wrlte(6,*) 'merit 2-> ',rain2

! output

if (drl .le. toldrl .or. minl .le. tolmin) stop ! within tol?

rup = amax1(rlfl, rlf2) + drl

if (rup .gt. rmax) rup=rmax
rmln = amln1(rlfl, rlf2) - drl

drl = (rup-rmin)/10.

go to 35

! new _x

! new min

! new increment

! new range & increment

end

Appendix B - FORTRAN code for Newton-Raphson approach

(Code in all CAPS is from Press [1986])

c Program to find radius vector lengths for comet geometry

real r(4), az(4), el(4), phi(4)
Include 'root.lnc' I Common for "usrfun"

c common /dim/ t(4,4), c(4,4), s(4,4), betasum

c open input file

open (unit=10, file='root.lnp', status='old')

c read input data from file ROOT.DAT

read(10,*) tolx, tolf, ntrlal

do 5, i=I, 3

do 5, j=i+1,4

read (10,*) t(l,J)

t(j,l) = t(l,j)
read (10,*) C_az(i), i=I, 4)

read (10,*) (el(i), i=I, 4)

! Tolerance x & f, max. Iters.

Target vector lengths

Symmetric

Azlmuth angles

Elevation angles

c convert to radians from degrees

I0

pl = 3.14159

do 10 I=I, 4

az(i) = az(1) * pi/180

el(1) = el(1) * pi/180

phi(1) = atan(tan(el(1)) * cos(az(1)))

! PI

c calculate cos and sin of angles between radius vectors (cos = el dot e2)

do 20, i=I, 3

do 20, j=l+l, 4

c(i,j) = sln(phl(1)) * sln(phi(j)) +
cos(phi(i))*cos(az(i)) * cos(phi (j))*cos(az(j)) +

cos(phl(1))*sin(az(i)) * cos(phl(j))*sin(az(j))

2O

c(j,l) = c(l,j)

s(i,J) = sqrt(I - c(i,j)**2)

s(j,l) = s(i,j)

! Symmetric
! Sine

! Symmetrlc

c maxlmum radius vectors and initial r

22

fac - I .0

do 30 I=I, 4
rmax = l.e20

do 25 j=l, 4

If (j ,eq, I) gO to 25

! large to start

! no angle here

I0

25

3O

if (s(i,J) .eq. 0.) go to 25

test = t(l,j) I s(i,j)
rmax = aminl (rmax, test)

cont inue

r(1) = fac * rmax
continue

write (6,*) 'Initial r(i)'

write (6,*) (r(i), I=I, 4)

! no llmit here

I start at 80% max

c call solver

nt = ntrial

call mnewt(nt, r, 4, tolx, tolf)

if (nt .eq. O) then
fac=fac - 0.1

If (fac .eq. O) stop

go to 22
endif

I plum run out

c check results

5O

do 50, i=I, 3

do 50, j=i+1, 4
tc = sqrt(r(i)**2 + r(j)**2 - 2*r(i)*r(j)*c(i,j))

write(6,*) 'in ',t(i,j), 'out ', tc

write(6,*) 'Rs ', (r(1), i=I, 4)

stop
end

11

11

12

13

SUBROUTINE MNEWT(NTR IRL ,X, N, TOLX ,TOLF)

PARAMETER (NP..4)

DIMENSION X(NP),RLPHA(NP,HP),BETR(NP), INDX(NP)

DO 13 K=I,NTR IAL
CALL USRFUN(X,RLPHA,BETA)

ERRF=O.

DO 11 I=I,N
ERRF=ERRF+ABS (BETA(I))

CONTINUE

IF(ERRF.LE.TOLF)RETURN
CALL LUDCMP(ALPHA,N,NP, INDX,D)

CALL LUBKSB(ALPHA,H,RP, INDX,BETA)
ERRX=O.

DO 12 I=I,H
ERRX=ERRX+ABS (BETA(I))

X(I),,X(I)+BETA(I)

CONTINUE

IF(ERRX.LE. TOLX)RETURN

CONT INUE

RETURN
END

12

11

12

13

14

15

16

17

18

19

SUBROUTINE LUDCMP(A,N,NP, INDX,D)

PARAMETER (NMAX=IOO,TINY=I .OE-20)

DIMENSION A(NP,NP),INOX(N),VV(NMRX)
D=I.

DO 12 l=1,M
AAMAX=O.

DO 11 J=I,N

IF (ABS(A(I,J)).GT.AAMAX) RRMRX=RBS(R(I,J))
CONTINUE

IF (AAMAX.EQ.O.) PAUSE 'Singular matrlx.'

VV(I)=I. IAAMAX

CONTI NUE

O0 Ig J=l,N
IF (J.GT.I) THEN

DO 14 I=I,J-I

SUM=A(I, J)

IF (I .GT.I)THEN

DO 13 K=I,I-I

SUM=SUM-A(I,K)*A (K, J)
CONTINUE

A(I ,J)=SUM

ENDIF

CONT INUE

END IF

ARMAX=O.

DO 16 I=J,N

SUM=A(I ,J)

IF (J.GT.I)THEN

DO 15 K=I,J-I

SUM=SUM-A(I,K)*A(K,J)
CONTINUE :_

A(I,J)=SUM
ENOIF

DUM=VV(I)*ABS (SUM)

IF (DUM.GE.AAMAX) THEN

IMAX= I
AAMAX=DUM

ENDIF

CONTINUE

IF (J.NE. IMAX)THEN

DO 17 K=I,N
DUM=A(IMAX, K)

A(IMAX,K)=R (J, K)

A(J,K)=DUM

CONT INUE

D=-D

VV(IMAX)=VV(J)

ENDIF

INDX(J)=I MAX

IF(J.NE.N)THEN

IF(A(J,J).EQ.O.)A(J,J)=TINY

DUM=I ./A(J,J)

O0 18 I=J+I,N

A(I,J)=A(I, J)*DUM
CONT INUE

ENDIF

CONTINUE
IF(A(N,N).EQ.O.)A(N,N)=TINY "

RETURN

END

13

11

12

13

14

SUBROUTINELUBKSB(A,N,NP,INDX,B)
DIMENSION A(NP,NP),INDX(N),B(N)

II=0

DO 12 I-I,N
LL=INDX(1)

SUM=B(LL)

B(LL)=B(1)

IF (II.NE.O)THEN

DO 11 J=ll,l-1
SUM=SUM-R(I,J)*B(J)

CONTINUE

ELSE IF (SUM.NE.D.) THEN

II-I

ENDIF

B(1)=SUM

CONTINUE

DO 14 I-N,I,-I
SUM=B(1)

IF(I.LT.N)THEN

DO 13 J=I+I,N
SUM=SUM-A(I,J)*B(J)

CONTINUE

ENDIF

B(1)=SUMIA(I,I)
CONTINUE

RETURN

END

14

USRFUH.FOR

subroutine usrfun (r, alpha, beta)

include 'root.lnc'

real alpha(4,4), beta(4), r(4)

c calculate functions and derivatives from law of cosines

i

beta(1) = -(r(1)*r(1) + r(2)*r(2) -

2*r(1)*r(2)*c(1,2) - t(1,2)*t (1, 2)

alpha(l,1) = 2"r(I) - 2"c(1,2)*r(2)

alpha(l,2) • 2'r(2) - 2"c(1,2)*r(I)

alpha(l,3) = 0

alpha(1,4) = 0

I

)
I-2

beta(2) = -(

alpha(2,2) =

alpha(2,3) =

alpha(2,1) =

alpha(2,4) =

r(1)*r(1) + r(3)*r(3) -

2*r(1)*r(3)*c(1,3) - t(1,3)*t(1,3)

0

2'r(3) - 2"c(1,3)*r(I)

2'r(I) - 2"c(1,3)*r3

0

I-3

beta(3) =

alpha(3,3)

alpha(3,4)

alpha(3,1)

alpha(3,2)

-(r(3)*r(3) + r(4)*r(4)

2*r(3)*r(4)*c(3,4) -

= 2"r(3) -2"c(3,4)*r(4)

= 2"r(4) -2"c(3,4)*r(3)

= 0

-

t(3,4)*t (3,4))

! 3-4

beta(4) = -(

alpha(4,2) •

alpha(4,4) •

alpha(4,1) =

alpha(4,3) =

r(4)*r(4) + r(2)*r(2) -

2*r(4)*r(1)*c(2,4) - t(2,4)*t(2,4)

2"r(2) -2"c(2,4)*r(4)

2"r(4) -2"c(2,4)*r(2)

0

0

! 2-4

bet asum = 0

wrlte(6,*)

wrlte(6,*)

'r-> ', (r(i), I=I, 4)

'beta-> ', (beta(i), I=I, 4)

! Convergence

return

end

15

